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Artificial Intelligence - study of "intelligent agents": any device that

perceives its environment and takes actions that maximize its chance of
success at some goal

Machine Learning - gives "computers the ability to learn without being
explicitly programmed." (Arthur Samuel, 1959)

Neural Networks - do tasks by considering examples, generally without
task-specific programming


https://en.wikipedia.org/wiki/Intelligent_agent
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Unsupervised (descriptive)
Characteristics

Person 1

Person 2

Define a measure of “good” for something
Minimize(- measure of “good”) w.r.t. something







Supervised (predictive)

Labe Characteristics
) Person 1
5 Person 2
?

Predict Label from doing something with Characteristics:
Minimize(error of prediction) w.r.t. something







Reinforcement (prescriptive)

Actions Reward Characteristics

2 Person 1
5 Person 2
2 | |2

Choose Actions from doing something with Characteristics
to get highest Reward:

Minimize(- Reward) w.r.t. something




* gait


https://www.youtube.com/watch%3Fv=pgaEE27nsQw
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Error of our algorithm
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* Training animation (people who liked the cake vs who didn’t)



https://gfycat.com/WarmAmbitiousDormouse
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http://setosa.io/ev/image-kernels/

Unsupervised Feature Learning

Unsupervised:
Define a measure of “good” for something

Minimize(- measure of “good”) w.r.t. something

Something — weights of the neural net and its

measure of “good” — performance on some task (labeled or
reinforcement)






Computer Vision
(ILSVRC)

* 2010 - 28.2%
* 2011 - 25.8%

¢ 2012 - 16.4% (the
2"d best entry had
an error rate of

26.2%).

* Alex Krizhevsky, llya
Sutskever, and
Geoffrey Hinton

Image classification

Easiest classes
ibex (100)  goldfinch (100) flat-coated retriever (100)

-z

red fox (100) hen-of-the-woods (100)

tiger (100)
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First Layer Representation Second Layer Representation Third Layer Representatior
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e sounds for filters



http://benanne.github.io/2014/08/05/spotify-cnns.html

“Garbage in -> Garbage out”







MIT
Technology
Re‘" eW Topics+ Top Stories

Connectivity

Neural Network Learns to Identify
Criminals by Their Faces
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Local Optima concerns




Net1 58.65%

Same architecture

Different random initialization

Same data for training

Net2 58.73%

Some features the same, some different, but they learn to do the same thing.



Transfer Learning




Transfer Learning

French English
actuellement current, present
fabrique factory

genial genius



Cats, dogs, animals

Cars, forks, industrial
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Neural Networks X2 information encoding



Current themes in research

* how to phrase problems
* how to optimize better
* what are we even doing



Current ML themes in industry

* Abusing ML
* Using ML in real products with well-trained teams and testing.



Takeaway

* Hierarchical Feature Learning is useful, transferable, robust
Ml and NN are really cool, but also really easy to do incorrectly
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https://vimeo.com/175540110
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 \/ideo prediction (GAN vs other)



https://coxlab.github.io/prednet/

e inverse bike



https://www.youtube.com/watch%3Fv=MFzDaBzBlL0

Additional

 tensorflow + colah: to experiment with colah’s blog post, play with
tensorflow playground.

* Notebooks + lectures: general ML. Lectures include derivations of the
methods covered.

e Hinton’s class: intuition behind some main methods. Pretty old at this
point, but a good thing to skim.

* Blogs: Karpathy, Colah, Distill: really well written and done blogs on
neural nets.



http://playground.tensorflow.org/
http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
https://github.com/chrisketelsen/csci5622notebooks
https://github.com/chrisketelsen/courses/blob/master/csci5622/resources/schedule.md
https://www.coursera.org/learn/neural-networks
http://karpathy.github.io/
http://colah.github.io/
http://distill.pub/

